
Answering Questions with Complex Semantic Constraints
on Open Knowledge Bases

Pengcheng Yin† Nan Duan‡ Ben Kao† Junwei Bao§ Ming Zhou‡
† The University of Hong Kong ‡ Microsoft Research Asia § Harbin Institute of Technology
† {pcyin, kao}@cs.hku.hk ‡§ {nanduan, v-jubao, mingzhou}@microsoft.com

ABSTRACT
A knowledge-based question-answering system (KB-QA) is
one that answers natural language questions with informa-
tion stored in a large-scale knowledge base (KB). Existing
KB-QA systems are either powered by curated KBs in which
factual knowledge is encoded in entities and relations with
well-structured schemas, or by open KBs, which contain as-
sertions represented in the form of triples (e.g., 〈subject; rela-
tion phrase; argument〉). We show that both approaches fall
short in answering questions with complex prepositional or
adverbial constraints. We propose using n-tuple assertions,
which are assertions with an arbitrary number of arguments,
and n-tuple open KB (nOKB), which is an open knowledge
base of n-tuple assertions. We present taqa, a novel KB-
QA system that is based on an nOKB and illustrate via
experiments how taqa can effectively answer complex ques-
tions with rich semantic constraints. Our work also results
in a new open KB containing 120M n-tuple assertions and a
collection of 300 labeled complex questions, which is made
publicly available1 for further research.

1. INTRODUCTION
A question-answering (QA) system is one that automati-

cally answers questions posed in natural languages (NLs).
Many of these systems are powered by knowledge bases
(KBs), whose information is often encoded as entities and
relations with well-structured schemas. With a knowledge-
based QA (KB-QA) system, a natural-language question is
typically answered in two steps: (1) the free-form natural-
language question is transformed into a structured query
(e.g., Sparql query [18]); and (2) answers are retrieved by
executing the structured query against a KB [4, 5, 13, 12, 3,
18]. Most of existing research on KB-QA systems focuses on
answering questions with simple semantic constraints, which
are often expressed by the verb phrase of one or multiple bi-
nary relations, such as:

single relation: Who [invented]rel the telephone? [4]

1
http://taqa.pcyin.me

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CIKM’15, October 19–23, 2015, Melbourne, Australia.
c© 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2806416.2806542.

multiple relations: Who [was married to]rel1 an actor that
[played in]rel2 Forrest Gump? [18]

Relatively few efforts, however, have been spent on an-
swering questions with rich semantic constraints, such as
those that are expressed via prepositional or adverbial mod-
ifiers. As an example, consider the following question:

Question: What was the currency of Spain before 2002?
Correct Answer: Peseta Incorrect Answer: Euro.

In this example, the prepositional phrase “before 2002” im-
poses a temporal constraint of the question. As we will elab-
orate shortly, such constraints are not conveniently handled
by QA systems built on existing KB models. Very often,
such constraints are lost during the transformation of ques-
tions into KB queries, resulting in incorrect answers (e.g.,
the answer “Euro” is returned instead of “Peseta”). The ob-
jective of this paper is to study how questions with complex
semantic constraints, particularly those expressed via prepo-
sitional or adverbial phrases, can be answered on a KB-QA
system. For convenient, we call those questions with com-
plex semantic constraints “complex questions”, while those
without “simple questions”.

To understand the difficulties of existing KB-QA systems
in answering complex questions, let us first briefly describe
their underlying KBs. KB-QA systems can be categorized
into curated KB-QA systems and open KB-QA systems. While
the former has a longer history with a number of implemen-
tations (e.g., DEANNA [18] and ParaSempre [5]), the lat-
ter has been recently proposed by Fader et al. (Paralex
[13] and oqa [12]). A curated KB-QA system is built upon
a curated KB (e.g., Freebase [6] and DBpedia [1]), which is
collaboratively and manually created. Information is mod-
eled as entities and relations that strictly follow a predefined
schema. Figures 1(a) and 1(c) show two snippets taken from
Freebase. Since a curated KB is manually edited, it is gen-
erally accurate and precise. There are, however, two aspects
of it that weaken its ability in answering complex questions.
[Query transformation] An open question has to be first
transformed into a structured query (such as Sparql query)
that is compatible with the KB schema, after which the
query is executed against the KB to obtain answers. For
example, Figure 1(b) shows a Sparql query (Y1) for the
question Q1: “What was James K. Polk?” This query is
obtained by observing that government_position is an oc-
cupation relation that semantically matches the verb “was”
in Q1. The transformation from Q1 to Y1 is straightforward
considering that Y1 involves only one relation in the KB.
Now consider a complex question Q2: “What was James
K. Polk before he was president?” The additional semantic

http://taqa.pcyin.me

constraint given in Q2 leads to a much more complex query
Y2. Although the temporal information of the occupation
that is needed to answer Q2 has been encoded using Com-
pound Value Types (CVTs) in Freebase, as denoted by two
⊗ nodes in Figure 1(a), existing curated KB-QA systems
do not yet have the logic to leverage this information and
correctly generate the required queries of complex questions
in general. As a result, complex constraints (such as “be-
fore he was president”) of questions are often neglected and
incorrect answers ensue.
[Incompleteness] Another problem faced by curated KB-
QA systems is the often incomplete KB schema. This of-
ten results in insufficient knowledge to resolve the complex
constraints posed in a question. For example, the question
Q3: “What was the currency of Spain before 2002?” cannot
be answered by the Freebase snippet shown in Figure 1(c)
because the years of circulation of the currencies are not
recorded in the KB.2

Recently, Fader et al. put forward open KB-QA systems
as an alternative approach for KB-QA [12, 13]. An open
KB [14] is a large collection of n-tuple assertions that are
automatically extracted from web corpora by means of open
information extraction (open IE) techniques [2, 11, 8, 17].
An assertion is a string n-tuple (n ≥ 3) which contains one
subject (sbj), one relation phrase (rel), and multiple argu-
ments (arg) in the form:

〈sbj ; rel ; Arg = {arg1, arg2, · · · , argn−2}〉.
Each element in the tuple is called a field. Table 1 gives

examples of such n-tuple assertions. The first assertion A1,
for example, is a 4-tuple: it consists of 1 subject (field),
1 relation phrase (field) and 2 arguments (fields). Since
assertions in an open KB are automatically acquired from
unstructured text, they are often unnormalized and noisy.
Nevertheless, two unique features of open KB make it poten-
tially more suitable for QA. First, as assertions are extracted
from text, all of their fields are strings in a natural language.
They can therefore naturally be used to answer NL ques-
tions by string matchings. In particular, unlike a curated
KB, there is not a predefined schema and hence no complex
query transformation is needed. Second, assertions in n-
tuple form contain rich semantic information, which can be
used to answer questions with complex semantic constraints.
For example, Question Q2, which is difficult to handle by a
curated KB, can be easily answered by matching a derived
tuple query 〈“James K. Polk”; “was”; ?x, “before he was pres-
ident”〉 against assertion A1 in Table 1.

Although open KBs stand out in handling complex ques-
tions, the state-of-the-art open KB-QA system, oqa [12],
is designed to operate on triplet assertions, each of which
contains only one single argument (in addition to a subject
and a relation phrase). In fact, the oqa system is pow-
ered by such an open KB of triples. This restricted model
of assertions (triples instead of n-tuple) limits the ability
of oqa in answering questions with complex semantic con-
straints. It is non-trivial to adapt the methodology of oqa
to an n-tuple open KB for two reasons. First, questions
with semantic modifiers exhibit a variety of syntactic forms.
oqa, however, parses simple questions into tuple queries us-
ing a small number of hand-crafted Part-of-Speech (POS)
templates. While this approach works very well with triples
under a rigid subject-relation-argument format, it is difficult

2This could have been solved by introducing a CVT node.

to extend those templates to cover questions with complex
semantic constraints, especially those that require (n-tuple)
assertions with multiple arguments (e.g., assertions A1 and
A2) to derive answers. Second, the query language of oqa
only supports querying triplet assertions. The query lan-
guage needs to be extended to handle n-tuple open KB,
whose assertions contain arbitrary numbers of arguments.

Considering the limitations of existing KB-QA systems in
answering complex questions, our goal is to design and im-
plement a novel open KB-QA system that can fully leverage
the rich semantics of n-tuple assertions for answering ques-
tions with complex semantic constraints. To achieve this
goal, two key components in an open KB-QA system, ques-
tion parsing and open KB querying, have to be redesigned.
As an overview, we propose a generic question parsing method
that is based on dependency parsing. Our method is able
to parse syntactically diverse questions with rich semantic
constraints. Moreover, we put forward an alignment-based
answer extraction approach, which is capable of efficiently
answering tuple queries using assertions with an arbitrary
number of arguments. Apart from these two contributions
which focus on leveraging n-tuple open KBs, we also im-
prove the general quality of KB-QA by designing a question
paraphraser powered by rich association features [5]. Ques-
tion paraphrasing has been proven important for open KB-
QA in bridging the lexical/sytactic gap between user-issued
questions and relevant KB assertions. Existing works em-
ploy shallow statistical features (e.g., PMI values) to eval-
uate each paraphrased question, which is unreliable when
the dataset used for paraphrasing is noisy. To improve ac-
curacy, we instead use rich association features to learn soft
paraphrase rules.

In summary, the main contributions of our paper are:
[nOKB] Existing open KBs (such as Open IE [12], Probase
[19] and Nell [7]) contain only triples. As we have ex-
plained, answering complex questions often require n-tuple
assertions of multiple arguments because they are much richer
in their semantic contents. Existing open KBs are thus in-
adequate. We fill this void by creating an n-tuple open KB
(called nOKB) of 120M assertions together with an evalu-
ation question set of 300 (and counting) complex questions
with labeled reference answers, which is released to the pub-
lic to facilitate further research.
[TAQA] We designed and implemented an n-Tuple-Assertion-
based Question-Answering system (called taqa) that oper-
ates on an nOKB for answering questions with complex se-
mantic constraints. We detail the key features of all the
major components of taqa and discuss how they were de-
signed to work with n-tuple assertions.
[Experiments] We conducted extensive experiments to com-
pare taqa against state-of-the-art open KB-QA and curated
KB-QA systems. Our results show that taqa outperforms
other KB-QA systems in answering complex questions. This
shows strong evidence that n-tuple assertions are indispens-
able in answering questions with rich semantic constraints.

The rest of the paper is organized as follows. Section 2
describes the workflow of taqa and its major components.
Section 3 shows our experimental results comparing taqa
against other state-of-the-art KB-QA systems. Section 4
further illustrates our proposed system by means of a case
study. Section 5 discusses related works. Finally, Section
6 concludes the paper and discusses several future research
directions.

Id Subject Relation Phrase Arguments Frequency Confidence

A1 James K. Polk was a governor, before he was president 2 0.94
A2 the currency of Spain was the Peseta, before 2002 3 0.86
A3 the Euro is national currency of Spain, since 2002 5 0.78
A4 the Peseta was the currency of Spain 3 0.85
A5 Spain introduced the Euro, as legal tender, in Jan. 2002 2 0.77
A6 the Vatican Lira was replaced by Euro, as official currency, in 2002 1 0.90
A7 the currency of France was the France Franc, before 2002 2 0.77
A8 the Greek currency was the drachma, before 2002 4 0.94

Table 1: Example assertions in nOKB. Arguments fields are separated by commas.

James K. Polk

government_position

government_position

President

1845

1849

Governor

1839

1841

from

from

SELECT ?job_title.

WHERE{

James K. Polk government_position ?job.

?job title ?job_title.

?job to ?to_date.

FILTER(?to_date < ALL(

SELECT ?start_date.

WHERE{

James K. Polk government_position ?job1.

?job1 title President.

?job1 from ?start_date.

}

))

}

𝑌1

𝑌2

….

Spain Euro
currency_used

….

currency code

Peseta
𝑄1: What was James K. Polk ?

𝑄2: What was James K. Polk before he was president? 𝑄3: What was the currency of Spain before 2002?

….

(a) (b) (c)

….

Figure 1: Freebase snippets and example Sparql queries

2. SYSTEM
In this section we introduce our system taqa. We first

give an overview of taqa’s workflow, followed by implemen-
tation details of each major component.

2.1 Overview
Given a natural language question Q, taqa processes the

question and outputs a list of ranked candidate answers A.
Figure 2 gives an illustrative example that shows the various
steps involved. There are four key components:

Question Paraphrasing (Section 2.2), which rewrites
the original user-issued question into a set of paraphrased
questions. Web users generally use informal and casual
wordings and expressions in questions. These questions are
difficult to parse and are hard to match with assertions in
an open KB. Question paraphrasing reformulates original
informal questions into formalized ones, which share simi-
lar grammatical structures and vocabulary with open KB
assertions. Moreover, each paraphrased question derives tu-
ple queries that are executed against the KB for answers.
By rewriting the user’s question into multiple paraphrased
questions, multiple queries are generated. This enhances the
recall of the QA system. To improve the quality of question
paraphrasing, in taqa, we employ rich association features
to help find high-quality paraphrased questions.

Question Parsing (Section 2.3), which parses each para-
phrased question into a set of tuple queries. A tuple query
(e.g., 〈?x ; “wrote”; “Harry Potter”〉) is similar to an n-tuple
assertion except that one of its fields is unknown. taqa em-
ploys a novel question parser that is able to identify rich
semantic constraints expressed in the question by analyzing
its dependency structure.

Open KB Querying (Section 2.4), which executes each
tuple query against the open KB to obtain a list of candi-
date answers. In order to effectively answer tuple queries us-
ing semantically rich n-tuple assertions, we propose a novel
alignment-based answer extraction approach that is capable

of pinpointing answers from open KB assertions that have
various numbers of arguments.

Answer Ranking (Section 2.5), which consolidates and
ranks candidate answers derived from different tuple queries.
Each candidate answer is associated with a set of features
that are obtained through the various steps in the whole
question-answering process. taqa employs a log-linear model
on the features to rank the candidate answers. Due to the
large feature space (which consists of over 20, 000 sparse fea-
tures), we use AdaGrad [10] to facilitate fast and effective
learning of the ranking model.

2.2 Question Paraphrasing
We follow the approach taken by oqa [12] of paraphrasing

a question using paraphrasing templates. A paraphrasing
template (PT) has the form

PT : psrc 7→ ptgt
where psrc and ptgt are the source and target templates, re-
spectively. Each such template is a string with wildcard vari-
ables. The purpose of a PT is to map a syntactic pattern
to an alternative one to facilitate the retrieval of relevant
assertions in the open KB. The following is an example PT:
PT1 : What kind of money did they use in ∗NP 7→

What was the national currency of ∗NP

where ∗NP is a wildcard variable that captures a noun phrase.
A user-issued question Q that matches the source template
of a PT is rewritten according to the target template of
the PT. Complex semantic constraints expressed as preposi-
tional/adverbial phrases in Q are left out in template match-
ing. These phrases are retained in the rewritten questions in
their original form. An example of applying PT 1 on question
Q4 is shown in Figure 2. Note that the rewritten question
Q5 allows a perfect match with assertion A2 (Table 1), which
provides the best answer to Q4.

We use the WikiAnswers paraphrasing templates dataset
released by [12], which contains 5 million templates created
by mining related questions tagged by users on WikiAn-

: What kind of money did they use in Spain before 2002?

: What was the national currency of Spain before 2002?

Question Paraphrasing

Question Parsing

Open KB Querying

Answer Ranking

(?x; is; national currency of Spain)(national currency of Spain; is; ?x, before 2002)

the Peseta
the Peseta

the French Franc
the drachma

the Euro

the Vatican Lira

the Peseta 0.45

the drachma 0.20

the Euro 0.20

f = [PMI=0.5, money national currency=1.0,…]

f = [PMI=0.5, …, is relaxed query = 1.0, …]f = [PMI=0.5, …, not relaxed query = 1.0, …]

f = […, align_score=1.9, …]

f = […, align_score=1.6, …]

f = […, align_score=1.6, …]

f = […, align_score=1.5, …]

f = […, align_score=1.0, …]

f = […, align_score=1.4, …]

f = [0.5, 1.9, 1.0, 1.0, 3.0, …]

f = [0.5, 1.5, 0.0, 1.0, 5.0, …]

f = [0.5, 1.6, 1.0, 0.0, 4.0, …]

Candidate Answers Candidate Answers

Tuple Query Tuple Query

Paraphrased Question

Q4

….

Q5

Figure 2: TAQA’s workflow

swers. The dataset is large but noisy, containing many
invalid PTs. Consider the following PT:
PT2 : What kind of money did they use in ∗NP 7→

What is the economic system of ∗NP

In [12], this problem is addressed by scoring each paraphras-
ing template using shallow features like its PMI value and
Part-of-Speech (POS) tags. However, we found that using
those shallow features alone is often inadequate. For exam-
ple, PT 1 has identical POS tags as those of PT 2.

In this paper we propose using rich association features to
identify high-quality question paraphrasing templates from
noisy data. The intuition is that strong associations between
elements in psrc and ptgt often indicate good paraphrasing
templates. For example, the association between “money”
and “national currency” (PT 1, a good PT) is much stronger
than that between “money” and “economic system” (PT 2, a
bad PT). Although the idea of using association features has
been explored in curated KB-QA systems [5] to rank gener-
ated queries, our work first applies it in the context of open
KB-QA for measuring the quality of question paraphrasing.

Specifically, for each PT: psrc 7→ ptgt , we iterate through
spans of text s ∈ psrc and t ∈ ptgt to identify a set of
association phrases, 〈s, t〉. For each 〈s, t〉, we generate a
set of indicative association features using the feature tem-
plates listed in Table 3. These features are used in the
answer ranker (Section 2.5) to measure the quality of the
PTs used in deriving the answers. Following [5], we iden-
tify association phrases by looking-up a table that contains
1.3 million phrase pairs. For example, an indicator feature,
I{“money” ∈ psrc ∧“national currency” ∈ ptgt} is generated
for the association phrases 〈“money”, “national currency”〉.
During training, the answer ranker will learn each feature’s
weight based on its predictive power. Also, answers derived
from high quality PTs will be given more credits. With our
training data, the question paraphraser uses over 20,000 as-
sociation features.

Algorithm 1: question parsing algorithm

input : natural language question Q
output: a set of tuple queries TQ

1 TQ = ∅, AnsType = null
2 DTQ = dependency parsing(Q)
3 rel = root = root word(DTQ)

4 S = {w ∈ Q|w nsubj,nsubjpass←−−−−−−−−−− root}
5 foreach word s ∈ S do
6 if qword ∈ descendants(s) then sbj =?x
7 else sbj =all words in descendants(s)
8 Arg = ∅
9 foreach w ∈ children(root), w 6∈ rel, w 6∈ sbj do

10 if qword ∈ descendants(w) then
11 if w is a preposition then arg = w ?x
12 else if qword = “where” or “when” then
13 arg = in/on ?x
14 else arg =?x

15 else arg =all words in descendants(w)
16 Arg = Arg

⋃
{arg}

17 TQ = 〈sbj ; rel ;Arg〉
18 TQ = TQ

⋃
{TQ}

19 AnsType = detect answer type(Q)
20 if AnsType! = null then
21 foreach query TQi ∈ TQ do
22 TQi = [TQi ∧ 〈?x;“is-a”;AnsType〉]
23 return TQ

Besides the association features introduced above, we also
use a set of statistical features such as the PMI value of the
PTs, the log normalized frequency of psrc and ptgt , etc. The
full set of features used in paraphrasing is listed in Table 3.

2.3 Question Parsing
Each paraphrased question Q is parsed into a set of struc-

tured tuple queries (TQs): TQ = {TQ1,TQ2, . . . ,TQK}.
Each tuple query TQ i has the form: TQ i = 〈sbj ; rel ; Arg〉,
which is similar to that of an n-tuple assertion (see Sec-
tion 1). For a TQ, either the subject field sbj or one of the
arguments in Arg is a wildcard (denoted by ?x), which in-
dicates the hidden answer the question Q seeks for. We call
that wildcard, ?x, the query focus of Q, denoted by FQ.

Existing open KB-QA systems employ a small number
of hand-crafted POS templates to parse questions into tu-
ple queries [12], which are limited in coverage and can only
handle questions without complex semantic constraints. In
this paper we propose a novel approach of parsing questions
by dependency analysis. This approach is partially inspired
by recent advances in open IE [17, 8] research, where depen-
dency parsing has been used to extract open IE assertions,
but never to parse questions into tuple queries. Algorithm
1 shows our question parsing algorithm.

Given a question Q, taqa first applies the Stanford parser
to construct a dependency tree, DTQ (Line 2). The nodes in
DTQ are made up of words in Q. The root of DTQ is usually
the main verb of Q and each edge in DTQ denotes a pairwise
dependency relation between two words in Q. For example,
in the sentence: “Bell makes electronic products”, the word
“Bell” is a nominal subject (nsubj) of“makes”, and hence the

dependency “Bell”
nsubj←−−−“makes” is derived. Table 2 shows

three example questions (Q5, Q6, Q7) and their respective
dependency trees. Given a dependency tree, taqa analyzes
the tree to identify the various fields of a tuple query (i.e.,
sbj, rel, and the arguments in Arg) as follows:

Table 2: Examples of questions, dependency trees and generated tuple queries

question and dependency tree tuple queries

what was national currency of Spain before 2002nsubj

nsubj

amod prep pobj

prep

pobj

Q5: What was the national currency of Spain before 2002?

TQ1: 〈national currency of Spain; is; ?x, before 2002〉
TQ2: 〈?x; is; national currency of Spain, before 2002〉
TQ3(relaxed): 〈national currency of Spain; is; ?x〉
TQ4(relaxed): 〈?x; is; national currency of Spain〉

where is Chile located on world map

advmod

auxpass

nsubjpass prep

pobj

nn

Q6: Where is Chile located on world map?

TQ5: 〈Chile; is located; in/on ?x, on world map〉
TQ6(relaxed): 〈Chile; is located; in/on ?x〉

in which movie did Billy D. Williams play character Lando Calrissiandobj

aux

nsubj

prep

pobj

det

Q7: In which movie did Billy D. Williams play character Lando Calrissian?

TQ7: 〈Billy D. Williams; play; character
Lando Calrissian, in ?x〉 ∧ 〈?x; is-a; movie〉

TQ8(relaxed): 〈Billy D. Williams; play; in ?x〉
∧〈?x; is-a; movie〉

[Identify Relation Phrase] (Line 3) The root word root
of DTQ is included in rel together with auxiliary words that
are children of root and that satisfy certain dependency rela-
tions with root. These dependency relations include copula
(cop), auxiliary (aux), passive auxiliary (auxpass), phrasal
verb particle (prt), etc. For example, the relation phrase of
question Q6 in Table 2 is “is located” because “located” is the
root verb and “is” is related to “located” by the dependency

“is”
auxpass←−−−−“located”.

[Identify Subject] (Lines 6-7) First, all nodes that are
nominal subjects (nsubj) or passive nominal subjects (nsub-
jpass) of root are collected in a set S. Then, for each node
s ∈ S, if the question word3, qword, is a descendant of s, the
subject sbj is the query focus ?x. Otherwise, sbj includes
all the descendants of s. Note that there could be multiple
nominal subjects in DTQ. In this case, we generate one tu-
ple query for each nsubj. For example, question Q5 in Table
2 derives 2 tuple queries TQ1 and TQ2.

[Identify Arguments] (Lines 9-16) Any child node w
of root that is not identified as a subject (sbj) or does not
belong to the relation phrase (rel) in the previous step de-
rives an argument in Arg. Specifically, if the question word
is a descendant of w, we create an argument that includes
a query focus ?x; otherwise, the argument includes all the
descendants of w.

[Compound Queries] (Lines 19-22) For each tuple query
TQ i obtained from the previous steps, we augment it by de-
ducing an answer type, AnsType, forming a compound con-
junctive query [TQ i ∧ 〈?x;“is-a”; AnsType〉]. The purpose is
to prune the search space for the answer (when the query is
later executed against a KB) by restricting the scope of the
query focus. For example, Question Q7 in Table 2 derives
the tuple query TQ7. Note that the focus for this query can
be restricted to the type “movie”, which is expressed by the
augmenting tuple query 〈?x ; “is-a”; “movie”〉. taqa iden-
tifies the noun phrase between qword and the auxiliary4 or
root verb as AnsType.

[Generate Relaxed Queries] Finally, if the question
Q is a complex question (with prepositional/adverbial con-
straints), taqa will remove the complex constraints and ad-
ditional objects of root (e.g., “character Lando Calrissian” in
Q7) and derives a relaxed question Q′. Algorithm 1 is then
applied onto Q′ to generate (relaxed) tuples queries. The
reasons are twofold. First, some complex constraints are re-
dundant and uninformative. For example, consider question

3Question words are “what”, “who”, “where”, “when” and “which”.
4Auxiliary verbs include “do”, “did”, “does”, “is”, “was”, “are”, etc.

Q6 in Table 2. The constraint “on world map” is uninforma-
tive; Q6 can be answered as well in its relaxed form. Second,
using relaxed tuple queries can improve coverage, since there
are likely assertions in the KB that do not mention the con-
straints given in the original question Q. TQ6 in Table 2 is a
relaxed tuple query of question Q6. The use of relaxed tuple
queries in answering questions is also illustrated in Figure 2
(see the right branch of the workflow).

2.4 Open KB Querying
After obtaining the set of tuple queries TQ, the next task

is to execute each query TQ ∈ TQ against the open KB to
obtain a set of candidate answers ATQ . This is carried out
in two steps. First, a set of assertions, RTQ , in the open
KB that are relevant to the query TQ is retrieved. In taqa,
assertions are indexed by Apache Solr5, which retrieves a
ranked list of assertions based on the terms mentioned in
the assertions and those in the tuple query. We refine RTQ

by removing assertions that have fewer fields than TQ , and
then retaining the top-50 of the remaining ones.

Next, we need to align the fields of TQ against those of
each assertion r ∈ RTQ . This is done to identify the field in
r that matches the query focus FQ, which is then taken as
the answer of TQ . Unlike oqa, for which queries and asser-
tions are both triples, taqa deals with n-tuple queries and
assertions with an arbitrary number of arguments. The mul-
tiplicity of Arg fields involves a complex alignment problem.
We put forward a novel answer extraction approach which
models the alignment problem as a matching problem on a
weighted bipartite graph. Figure 3 illustrates the alignment
between a tuple query TQ7 (mentioned in Table 2) against
the assertion r : 〈“Billy Dee Williams”; . . .〉 (shown in the
figure). Specifically, in the bipartite graph G, fields in TQ
form one type of nodes while fields in r form another. Let
TQ .i and r.j denote the i-th field of TQ and the j-th field
of r, respectively. The weight of the edge connecting TQ .i
and r.j in G is given by the following similarity measure:

similarity(TQ .i, r.j) = α · text similarity(TQ .i, r.j)

+ (1− α) · pattern similarity(TQ .i, r.j)

where α is a tuning weight (α = 0.5 in the experiment).
text similarity is the TF-IDF score of two lemmatized strings.
pattern similarity is the sum of three indicator functions that
utilize POS/prefix/question patterns:

• I1 = 1 iff (TQ .i is ?x) ∧ (r.j is a noun phrase).

5
http://lucene.apache.org/solr/

http://lucene.apache.org/solr/

Billy D. Williams play character Lando Calrissian

in the 1980s

in [?]

Billy Dee Williams played Lando Calrissian in Star Wars

𝑇𝑄7:

𝑟:

0.4 0.55 0.550.45

𝑎1: Star Wars 𝑎2: the 1980s

0.5

(𝐹𝑄)

(alignment score = 1.9) (alignment score = 1.9)

𝑇𝑄. 1 𝑇𝑄. 2 𝑇𝑄. 3 𝑇𝑄. 4

𝑟. 1 𝑟. 2 𝑟. 4𝑟. 3 𝑟. 5

Figure 3: n-tuple alignment

• I2 = 1 iff (qword is “when”) ∧ (TQ .i is “in/on” ?x) ∧
(r.j is of the pattern “in/on date time string”).

• I3 = 1 iff (TQ .i is FQ) ∧ (FQ and r.j start with the
same preposition).

We then seek all optimal matchings for the following con-
strained optimization:

max :
∑
i

∑
j

xij · similarity(TQ .i, r.j)

subject to: (x11 = 1), (x22 = 1), (xij ∈ {0, 1})

(0 ≤
∑
i

xij ≤ 1), (
∑
j

xij = 1). (1)

where xij = 1 iff TQ .i is aligned to r.j. The constraints
x11 = 1 forces the alignment between two sbj fields. Likewise
with x22 = 1 for the rel fields. The field of r that is aligned
to the query focus field of TQ in each optimal matching
is added to ATQ as an answer. As an example, in Figure
3, there are two optimal matchings (the query focus field
has equal weights with “in Star Wars” and “in the 1980s”),
deriving two answers (a1 and a2).

The tuple query used in the illustration (Figure 3) is actu-
ally part of a compound query (TQ7 in Table 2). For such
cases, taqa verifies the answer by querying the KB using
the other part of the query. For example, taqa evaluates
the tuples 〈“Star Wars”; “is-a”; “movie”〉 and 〈“the 1980s”;
“is-a”; “movie”〉 against the KB. Answer a2 is eliminated
because it is not supported by the assertions in the KB.

2.5 Answer Ranking
Generally, a question Q is paraphrased into multiple ques-

tions, each such question is parsed into multiple tuple queries
and each tuple query can derive multiple answers. taqa col-
lects all these candidate answers into an answer set A. The
final stage of the QA process is to determine the best answer
in A. An answer a ∈ A is associated with many features as
it is derived along the paraphrasing-parsing-querying pro-
cess. We use f(a) = [f1(a), f2(a), . . . , fM (a)] to denote the
feature vector of a. taqa uses these features to rank the
candidate answers. Table 3 lists the features used in taqa.

The answer set A is first consolidated. In many cases, the
same answers are derived via different paraphrasing-parsing-
querying outputs. These answers have the same string value
but different feature vectors, which should be combined.
Specifically, if ai, aj ∈ A are same answers, then their fea-
ture vectors are combined by taking the best value for each
individual feature. For example, if fk represents the align-
ment score (Equation 1) of the assertion that derives an an-
swer, then the combined feature value is max(fk(ai), fk(aj))
because a higher alignment score indicates better answer
quality. This simple approach of consolidating features has
been proven useful in [15]. Furthermore, we add statistical
features that measure the “popularity” of answers. These

KB # assertions # relation phrases

Open IE 458M 6M
Probase 170M 1
Nell 2M 300
nOKB 120M 4.6M

Table 4: Statistics of nOKB+ used by TAQA

WebQuestions
. who played jacob black in twilight? Taylor Lautner
. what timezone is nashville tn? Central Time Zone
. who did roger federer married? Mirka Federer
ComplexQuestions
. what team did shaq play for before the lakers? Orlando Magic
. what country gained its independence from
britain in 1960?

Cyprus

. what did france lose to the british in the treaty
of paris in 1763?

Dominica

Table 5: Sample questions from WebQ and CompQ

features include the occurrence frequency of an answer in
A, and the answer’s n-gram correlation defined in [9].

After consolidation, we apply a standard log-linear model
to estimate the probability p(a|Q) for each a ∈ A:

p(a|Q) =
exp{

∑M
k=1 λk · fk(a)}∑

a′∈A exp{
∑M

k=1 λk · fk(a′)}

where λk denotes the k-th feature’s weight, and rank candi-
date answers accordingly. We limit the size of A to the top
200 candidates when calculating p(a|Q).

We tune the feature weights λ = {λk} using a set of N
question and gold-standard answer pairs D = {(Qt, at)}, by
maximizing the log-likelihood of the training data:

L(D;λ) =

N∑
t=1

log p(at|Qt;λ)

taqa employs AdaGrad [10] to effectively learn the weights
of over 20, 000 sparse features.

3. EXPERIMENT
In this section we evaluate taqa. We primarily address

the following two questions: (1) How does taqa’s perfor-
mance compare with the state-of-the-art open KB-QA and
curated KB-QA systems, especially in answering complex
questions? (2) How do the various components of taqa im-
pact the system’s performance? We will first describe the
open KB taqa uses, the evaluating question sets, the per-
formance metrics, and two other KB-QA systems, namely,
oqa and ParaSempre, before presenting the results. We
also present insightful case study in Section 4.

[Open KBs] There are three well known open KBs, namely,
Open IE [12], Probase [19] and Nell [7]. Open IE is a
large open KB built by performing open IE on ClueWeb.
Probase is an open KB of is-a assertions extracted from
1.68B web pages. Nell is a relatively small open KB which
contains highly precise assertions. Assertions in the above
three KBs are all triples. As we have explained, n-tuple
assertions are richer in semantics, and are more suitable for
answering complex questions. Hence, we build a new open
KB of n-tuple assertions (called nOKB) using the latest open
IE technique. Here, we briefly discuss how nOKB was built.

First, we need to collect a set of documents D from which
assertions are extracted. We collect all English Wikipedia

Table 3: List of features used in TAQA

Question Paraphrasing, association feature templates (〈s, t〉: association phrases)
. I{lemma(s) ∈ psrc ∧ lemma(t) ∈ ptgt}, lemma(·) is the lemmatised text . I{pos(s) ∈ psrc ∧ pos(t) ∈ ptgt}, pos(·) is POS tags
. I{lemma(s) and lemma(t) are synonyms} . I{lemma(s) and lemma(t) are word-net derivations} [5]

Question Paraphrasing, other features (Qi: paraphrased question, psrc : source template, ptgt : target template)
. I{Qi is the original question} . PMI (psrc 7→ ptgt), PMI value of the paraphrase template
. |words captured by ∗NP |/|psrc| . log normalized frequency of psrc and ptgt

Question Parsing (TQ: tuple query)
. I{TQ is relaxed query} . I{TQ is not relaxed query}

Open KB Querying (r: assertion, a: candidate answer)
. alignment score of TQ and r . word count of the answer a . ratio of capital words in a
. the average IDF value of words in a . I{a in a predefined entity list} . I{a is a date time ∧ qword = “when”}
. cosine similarity of fields in r and TQ . extraction frequency and confidence of r . the rank of r ∈ RTQ

. the source of r (cf. Table 4) . I{TQ is join query} . cosine similarity of join keys

Answer Ranking (A: candidate answers set)
. n-gram correlation score of a [9] . occurrence frequency of a in A

documents into a set Dwiki . Also, for each question Q in an
evaluation question set QS (we will explain shortly how QS
is obtained), we submit Q to a commercial search engine and
retrieve top-200 documents. The retrieved documents for all
the questions form the set DQS . We get D = Dwiki ∪ DQS ,
which contains 5.7M web pages. We use OpenNLP6 to ex-
tract sentences from documents, and filter out non-English
sentences and those with more than 100 words. After that,
we apply Open IE 4.17 to the sentences to obtain n-tuple
assertions. We remove assertions whose subject or argument
fields are either stop words or more than 10 words in length.
The process results in 163M sentences and 120M n-tuple as-
sertions. These 120M assertions form nOKB. taqa operates
on assertions provided by all 4 open KBs. We denote the
combined KB, nOKB+. Table 4 summarizes these KBs.

[Question Sets] The experiments were conducted on two
sets of questions, WebQuestions and ComplexQuestions. Each
question set is a collection of (question, gold-standard-answer)
pairs. Table 5 gives example pairs taken from the two sets.

WebQuestions [4] (abbrev. WebQ) is the de facto ques-
tion set used to evaluate curated KB-QA systems. It consists
of 5, 810 question-answer pairs. Questions are collected by
the Google Suggest API and manually answered by AMT
workers using Freebase. WebQ is moderated for curated
KB-QA systems in that all questions are answerable with
Freebase (a curated KB). We observe that most of the ques-
tions in WebQ are simple questions; only 80 (4%) of the
questions in the test set of WebQ (2, 032 questions) come
with complex semantic constraints.

ComplexQuestions (abbrev. CompQ) is a new dataset
created in this work, which focuses on open domain complex
questions with prepositional/adverbial constraints. CompQ
consists of 300 complex questions obtained as follows: First,
all 80 complex questions in WebQ are added to CompQ.
Next, we follow the approach given in [4] to crawl questions
using the Google Suggest API. We start with a seed ques-
tion Q∗: “Who did Tom Hanks play in Toy Story?”. We
google Q∗ to obtain at most 10 suggested questions. We
retain those suggested questions that begin with a wh-word
and which contain at least one preposition. For each such
question, we remove the entities mentioned in the question
and submit the resulting string to google to obtain more
suggested questions. The process is repeated in a breadth-
first manner. Due to space limitation, readers are referred

6
http://opennlp.apache.org/

7
http://knowitall.github.io/openie/

to [4] for the details of the procedure. We collected a total of
100, 000 questions, and then randomly picked 220 complex
questions out of the pool. Of all the questions in CompQ,
20 of them have either 2 or 3 complex constraints, the rest
have 1 complex constraint each.

[Metrics] WebQ comes with a set of answers that are la-
beled as correct or incorrect [12]. For CompQ, we manually
label the answers returned by the QA systems we tested.
Given a question, each QA system computes a ranked list of
answers and returns the top-ranked one as the final answer.
We measure the performance of a system by its accuracy:

acc =
number of correctly answered questions

total number of questions
.

[QA systems] We compare taqa against the current state-
of-the-art KB-QA systems: oqa [12], which is the latest
open KB-QA system based on triple-form assertions, and
ParaSempre [5], which is an advanced curated KB-QA sys-
tem powered by Freebase. We use nOKB+ as the open KB
for both oqa and taqa. For oqa and ParaSempre, we use
the trained models provided by their authors.8 For taqa,
we train its feature weights λ on nOKB+ using the standard
training set of WebQ (3,778 questions).

3.1 Results
Table 6 shows the accuracy (acc) of the the three KB-

QA systems when presented questions from the two question
sets. Readers are reminded that ParaSempre uses a differ-
ent KB (Freebase) from that of oqa and taqa (nOKB+).
The performance numbers of ParaSempre should not be
compared directly with those of the other two systems. Nonethe-
less, these numbers provide interesting references.

We first compare oqa and taqa in answering complex
questions (CompQ). From Table 6, we see that oqa had
a hard time handling complex questions with an accuracy
of only 2%. We studied how oqa handled each of the 300
questions in CompQ. We make the following observations
about its poor performance. First, oqa relies on a limited
number of hand-crafted POS templates for question pars-
ing. These templates are inadequate in parsing questions
with complex semantic constraints (see Section 2.3). In fact,
only about 10% of the questions in CompQ are successfully
parsed by oqa into tuple queries; the other 90% do not result
in any tuple queries and thus are not answered by oqa. In
sharp contrast, taqa employs dependency analysis in ques-

8We also train oqa on nOKB+, but the provided model gives
better results.

http://opennlp.apache.org/
http://knowitall.github.io/openie/

Systems ComplexQuestions WebQuestions

oqa 2.0% 22.9%
taqa 39.3%39.3%39.3% 35.6%
ParaSempre 9.7% 45.8%45.8%45.8%

Table 6: Accuracies (acc) of systems

tion parsing, which allows it to successfully parse 98% of
the questions. Second, oqa was designed to handle triplets
assertions. In particular, only the first three fields (sbj, rel,
and the first argument in Arg) of assertions in nOKB+ are
used. oqa is therefore unable to fully utilize the rich se-
mantic information that is often displayed in the additional
argument fields of n-tuple assertions. taqa, on the other
hand, employs a matching approach to align complex tuple
queries to n-tuple assertions. This allows taqa to make full
use of the assertions’ argument fields, resulting in a very
respectable accuracy of 39.3%.

We also used ParaSempre to answer CompQ questions
and registered a 9.7% accuracy. Given a questionQ, ParaSem-
pre first parses Q into a number of Sparql queries. It
then evaluates the queries and executes the top-ranked one
against Freebase. We found that due to the complexity of
questions in CompQ, ParaSempre generates an average of
2,090 candidate queries for each question in CompQ, in an
attempt to cover all potential answers. It turns out that
most of these queries are false queries, which lead to incor-
rect answers. The big pool of queries makes it very difficult
for ParaSempre to identify the best query to obtain the
correct answers with any less-than-perfect ranking method.
In contrast, taqa generates, on average, 25 tuple queries
for each question in CompQ. The small query pool makes
it easier to identify (rank) the best query for a correct an-
swer. Moreover, many of the Sparql queries generated by
ParaSempre fail in capturing the questions’ complex con-
straints. For example, the query ParaSempre executed
for the question: “What character did Anna Kendrick play
in Twilight?” is without the underlined constraint. In con-
trast, for the same question, taqa executes the tuple query
〈“Anna Kendrick”; “play”; ?x, “in Twilight”〉∧〈?x ; “is-a”;
“character”〉 and extracts the correct answer from assertion
〈“Anna Kendrick”; “plays”; “Jessica Stanley”, “in Twilight”〉.

Another reason why ParaSempre gives a relatively low
accuracy for CompQ questions is the restricted coverage of
Freebase (a curated KB). For example, ParaSempre fails to
answer the question “When did Canada gain independence
from England?” because Freebase does not contain the fac-
tual knowledge about the independence of countries.

Next, we consider questions from WebQ. Recall that ques-
tions in WebQ are predominately simple questions and that
all are answerable with information on Freebase. ParaSem-
pre is very effective in answering them, which is reflected
by the very high (45.8%) accuracy.

Because of the simplicity of WebQ questions, oqa does
not encounter much problem in parsing questions or exe-
cuting queries in triples form. Its gives a decent accuracy
of 22.9% with WebQ. Despite the fact that simple ques-
tions do not necessarily require the rich information pro-
vided by the additional argument fields in n-tuple asser-
tions (which taqa excels in manipulating), taqa still out-
performs oqa significantly (with an accuracy of 35.6%). Be-
sides the sophisticated techniques taqa employs in the para-
phrasing, parsing, querying, and ranking, we found that an-
other factor that contributes to the gap is the difference

Systems ComplexQuestions WebQuestions

taqa (Full model) 39.3% 35.6%
No complex constraints 29.3% (-10.0%) 34.0% (-1.6%)
No relaxed queries 27.7% (-11.6%) 32.3% (-3.3%)
No association features 35.3% (-4.0%) 30.3% (-5.3%)
No answer consolidation 32.3% (-7.0%) 26.3% (-9.3%)

Table 7: Component ablation test for TAQA (acc)

in the style of the queries generated by the two systems.
The POS templates used in oqa for question parsing is de-
signed for generating ReVerb style queries [11] (e.g., 〈?x ;
“is national currency of”; “Spain”〉) instead of OpenIE style
queries (e.g., 〈?x ; “is”; “national currency of Spain”〉), which
are generated by the tool we use to build nOKB. In other
words, assertions in nOKB, which are used in our experi-
ment, match the tuple queries generated by taqa better.
This facilitates query execution and hence gives a higher ac-
curacy. This observation leads to an interesting question of
how open IE assertion styles impact QA systems, which we
leave as a future work.

taqa’s performance on WebQ is slightly lower than that
on CompQ. We note that this could be attributed to the fact
that nOKB+ does not have adequate knowledge to support
answering some questions in WebQ that are tailored for
Freebase. For example, taqa makes a constant error in an-
swering questions about tourist attractions like “What to see
in Paris?”, a category of question that is not well covered by
nOKB+. In contrast, ParaSempre can easily answer these
questions using tourist_attractions relation in Freebase.

taqa employs a number of techniques along the question-
answering process. Our next set of experiments is to eval-
uate the effectiveness of each component. This is done by
removing these components one at a time and observing the
accuracy of the resulting system. Table 7 shows the results.

In the first test (labeled “No complex constraints”), we
stripped all complex constraints (e.g., “before 2002”) from
the tuple queries generated by the question parser. Each
TQ is thus in the basic triple form. For CompQ questions,
we see that the accuracy drops by 10% points. This shows
that the ability of taqa’s parser in composing queries in the
n-tuple form has a significant impact in answering complex
questions. One might expect acc to drop even lower than the
29.3% shown, considering that stripping the complex con-
straints would “destroy” the questions in CompQ, which are
all complex questions. The answer to this is twofold. First,
sometimes complex constraints in questions are redundant
and the questions can be answered by simpler triple queries.
An example is “Who plays Bilbo Baggins in The Hobbit?”,
which can be answered by the triple query 〈?x ; “plays”; “bilbo
baggins”〉. Second, for cases where dropping the constraints
causes ambiguity in answers, sometimes, the correct answers
can still be got simply because they happen to be the most
popular answers among the assertions in the KB. For ques-
tions in WebQ, stripping complex constraints had little ef-
fects, since questions are predominately simple questions.

In question parsing, relaxed queries (those with complex
constraints removed) are generated in addition to the regu-
lar ones. The objective is to improve the coverage of queries
(Section 2.3). In our next test, we suppressed relaxed query
generation (labeled “No relaxed queries”). For CompQ, we
see an accuracy drop of 11.6% points, which is even more
than that in the first test. This shows that considering all
the constraints in questions (no relaxed queries) is no bet-

Rank: 1 2-5 6-10 11-20 >20

ComplexQuestions 59.9% 19.8% 8.1% 4.1% 8.1%
WebQuestions 62.7% 15.8% 6.4% 4.9% 10.2%

Table 8: Rank distribution of correct answers

ter than ignoring all of them (no constraints); the cover-
age of queries is indeed an important factor. taqa (full
model) is able to combine the scattered evidence of answers
extracted from both relaxed and “complete” queries via an-
swer consolidation (Section 2.5), which boosts the rank of
the answers that are derived from both forms of queries. An
example question is “What book did Charles Darwin wrote
in 1859?”, which has a relevant assertion A: 〈“Charles Dar-
win”; “wrote”; “On the Origin of Species”, “in 1859”〉. With-
out relaxed queries, the correct answer was ranked only sec-
ond because A has a low frequency in the KB. The full model
correctly ranked the answer top-1 because it got more evi-
dence for the answer from the relaxed query 〈“Charles Dar-
win”; “wrote”; ?x〉 which is supported by a frequent assertion
〈“Darwin”; “wrote the book”; “On the Origin of Species”〉.

While oqa uses shallow features in question paraphrasing,
taqa uses 20,000 association features in addition to shallow
statistical features (Section 2.2). Our next test removed all
association features (labeled “No association features”). We
observed an accuracy drop of 4.0% and 5.3% for CompQ and
WebQ, respectively. This shows that association features
are very useful in paraphrasing. Finally, taqa performs an-
swer consolidation in the answer ranking step (Section 2.5)
— the same answers (but with different feature vectors) are
consolidated into one by combining their feature vectors.
The last test turned off answer consolidation (labeled “No
answer consolidation”). In this case, we see significant drops
in accuracy of 7.0% and 9.3% for CompQ and WebQ, re-
spectively. Answer consolidation, which allows taqa to en-
semble scattered evidence in the KB for more confidence in
answers, is seen as an important technique.

Our last experiment investigates the effectiveness of taqa’s
answer ranker (Section 2.5). We say that a question Q is an-
swerable by taqa if it’s correct answer appears in the ranked
list of candidate answers generated for Q. Intuitively, for an
answerable question, taqa is capable of identifying the cor-
rect answer as a candidate. An effective ranker would rank
the correct answer first in the list so that it is returned as the
final answer. In our experiment, 65.7% of CompQ questions
and 56.8% of WebQ questions are answerable. For those an-
swerable questions, Table 8 shows the distribution of their
ranks. From the table, we see that taqa’s ranker is very
effective; the distribution is very skewed towards the top
ranks. In particular, for both CompQ and WebQ questions,
around 60% of correct answers were ranked top-1 and around
80% of them were ranked top-5. The distributions shown in
Table 8 is indeed insightful. For example, for CompQ, 19.8%
of correct answers were ranked top-2-to-5, which are about
1/3 of those top-1 ones (59.9%). These correct answers were
so close to be picked as the final answers. If we can further
improve taqa’s ranker such that all these correct answers
are promoted to top-1, we would have effectively improve
the accuracy of taqa by 1/3. This discussion indicates that
more effort should be spent on further improving the ranker.

4. CASE STUDY
In this section we present a few representative questions

that illustrate successful and failed cases of taqa (Table

Example 1

Question: Q9: What movies did Morgan Freeman star in?

Paraphrased: Q′
9: What movies did Morgan Freeman play in?

Q′′
9 : What movies did Morgan Freeman star in?

Queries: TQ′
9: 〈Morgan Freeman; play; in ?x〉∧〈?x; is-a; movie〉

TQ′′
9 : 〈Morgan Freeman; star; in ?x〉∧〈?x; is-a; movie〉

Assertions: A9: 〈Morgan Freeman; played; god, in Bruce Almighty〉
A10: 〈Morgan Freeman; starred; in Bruce Almighty〉

Answer: Bruce Almighty

Example 2

Question: Q10: Where did Barack Obama go to college in 1991?

Paraphrased: Q′
10: Where did Barack Obama graduate from in 1991?

Q′′
10: Which university did Barack Obama attend in 1991?

Queries: TQ′
10: 〈Barack Obama; graduate; from ?x, in 1991〉

TQ′′
10: 〈Barack Obama; attend; ?x〉∧〈?x; is-a; university〉

Assertions: A11: 〈Barack Obama; graduated;

from Harvard Law School, in 1979 and 1991〉
A12: 〈Barack Obama; graduated; magna cum laude,

from Harvard Law School, in 1991〉
A13: 〈Barack Obama; attended; Harvard Law School〉

Answer: Harvard Law School

Example 3

Question: Q11: Where Turkish people originate?

Paraphrased: Q′
11: Where is Turkish people origin?

Queries: TQ′
11: 〈Turkish people; is; origin, in ?x〉

Assertions: A14: 〈many Turkish Alevi; are; of Arab origin, in Syria〉
Answer: Syria

Example 4

Question: Q12: Who was the father of King George VI?

Queries: TQ12: 〈?x; was; father of King George VI 〉
Assertions: A15: 〈Queen Elizabeth; was; wife of King George VI 〉

(extracted from 10 relevant assertions)

A16: 〈George V; was; father of King George VI 〉
(extracted from 1 relevant assertion)

Answer: Queen Elizabeth

Table 9: Examples of successful and failed cases

9). Through these cases, we obtain insights into the key
components of a good KB-QA system.

Open KBs are noisy and unnormalized. A challenging
problem is to bridge the lexical/syntactic gap between in-
put questions and relevant assertions. When this gap is
small, taqa is very successful in finding the correct answer.
Example 1 shows such a case. Question Q9 is paraphrased
into Q′9 and Q′′9 , which match perfectly the assertions A9

and A10 in the KB, respectively. This results in a correct
answer. When the lexical gap is large, paraphrasing is our
hope in narrowing the gap. Example 2 shows such a case.
Question Q10 uses informal expressions, which shares little
lexical overlap with the relevant assertions (A11, A12, A13).
In this example, taqa successfully paraphrases Q10 into for-
malized ones (Q′10, Q′′10), which are parsed into tuple queries
(TQ ′10,TQ ′′10) that perfectly match the assertions.

While good paraphrasing can help bridge the lexical gaps,
poor paraphrasing can adversely affect question parsing. taqa’s
parser employs dependency analysis, which requires ques-
tions to follow correct grammatical rules. If the paraphrased
questions are grammatically incorrect, the parsed tuple queries
will be erroneous, resulting in incorrect answers. Example 3
shows such a case. Question Q11 is paraphrased as a gram-
matically ill-formed question (Q′11), which is parsed into a
malformed dependency tree, resulting in a meaningless tuple
query (TQ ′11) and an incorrect answer.

Similarity measures (see Section 2.4), which are used to
evaluate the relatedness between tuple queries and asser-
tions play an important role in filtering incorrect candidate
answers. In the current implementation, taqa primarily

employs cosine similarity on text, which is insufficient to
measure the semantic relatedness between queries and asser-
tions. This is illustrated by Example 4. For Question Q12,
taqa returns the incorrect answer “Queen Elizabeth” instead
of the correct one “King George V”. The reason is that al-
though assertion A16 gives a larger cosine similarity with the
tuple query TQ12 than does A15, the difference in the sim-
ilarity scores is marginal. The higher popularity of A15 in
the KB over-offsets the similarity difference, giving “Queen
Elizabeth” a higher rank. To improve, one needs to look into
similarity measures that can discover deep semantic relat-
edness between short-texts, which has been recognized as a
fundamental task in AI.

5. RELATED WORKS
There are two lines of research in KB-QA systems. One

focuses on curated KBs and the key challenge is to trans-
form the lexicon of NL questions to structured KB queries.
Sempre [4] utilizes a set of ReVerb extractions to map NL
phrases to KB relations. Kwiatkowski et al. [16] proposed
to learn intermediate semantic representations directly from
NL questions, with which KB queries are derived on the fly
using Wiktionary as synonymy features. Xu et al. [20]
proposed to learn an alignment model between NL phrases
and Freebase relations from large web corpora. They ap-
proached the task of finding corresponding Freebase rela-
tions given NL phrases via classification. Recently, Berant
et al. [5] proposed ParaSempre, which applies an “over-
generate and re-rank” strategy. The strategy is to enumer-
ate possible KB queries and transform them to synthetic
NL questions. They also applied a paraphrase model with
rich association and embedding features to rank candidate
queries based on the similarity between the input and the
synthesized questions.

Another line of research focuses on open KB-QA. Par-
alex [13] is the first open KB-QA system, which is based
on learned lexicons from a corpus of question paraphrases.
More recently, Fader et al. proposed oqa [12], a unified
framework for open domain question answering on curated
and open KBs. oqa processes questions using a cascaded
pipeline of paraphrasing, question parsing, query rewriting
and execution. Our work is similar with oqa in decom-
posing QA into different sub-components. However, we put
forward a number of techniques which are essential in pro-
cessing complex questions.

6. CONCLUSION AND FUTURE WORK
In this paper we presented a novel open KB-QA system,

taqa, that is able to answer questions with complex se-
mantic constraints using n-tuple open KB, nOKB. We pro-
posed new question parsing and answer extraction methods
that are adapted to n-tuple assertions. Empirical evaluation
showed that our system significantly outperformed state-of-
the-art curated KB-QA and open KB-QA systems in an-
swering questions with rich semantic constraints.

Through discussions, we have identified a number of key
issues that have strong implications to the performance of
taqa. These include (1) question parsing that is robust to
grammatical errors in questions, (2) similarity measures that
can capture the deep semantic relatedness between queries
and assertions, (3) answer ranking that can leverage more
powerful features. In addition, efficient methods for cleaning
and canonicalizing n-tuple assertions would greatly improve
the quality of the open KB, and thus the QA accuracy.

Finally, we remark that taqa and ParaSempre excel in
handling complex questions and simple questions, respec-
tively. In practice, user-issued questions can be of either
kind. A natural extension to our work for handling a mixed
question workload is ensembling. As an example, we trained
an ensemble model using RankBoost with simple statisti-
cal features to re-rank the combined top-10 outputs from
taqa and ParaSempre. On a mixed question set of 30%
complex questions and 70% simple questions, the ensem-
ble model achieves an accuracy of 46.6%, which is better
than running taqa on CompQ (39.3%) or ParaSempre on
WebQ (45.8%). This shows that ensembling is a promising
approach for further explore.

Acknowledgments
This research is supported by Hong Kong Research Grants
Council GRF grant HKU712712E. We would like to thank
the anonymous reviewers for their insightful comments.

7. REFERENCES
[1] S. Auer et al. Dbpedia: A nucleus for a web of open data.

In ISWC/ASWC, 2007.

[2] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead,
and O. Etzioni. Open information extraction from the web.
In IJCAI, 2007.

[3] J. Bao et al. Knowledge-based question answering as
machine translation. In ACL (1), 2014.

[4] J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic
parsing on freebase from question-answer pairs. In EMNLP,
2013.

[5] J. Berant and P. Liang. Semantic parsing via paraphrasing.
In ACL (1), 2014.

[6] K. D. Bollacker and C. Evans et al. Freebase: a
collaboratively created graph database for structuring
human knowledge. In SIGMOD, 2008.

[7] A. Carlson et al. Toward an architecture for never-ending
language learning. In AAAI, 2010.

[8] L. D. Corro et al. Clausie: clause-based open information
extraction. In WWW, 2013.

[9] N. Duan. Minimum bayes risk based answer re-ranking for
question answering. In ACL (2), 2013.

[10] J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient
methods for online learning and stochastic optimization. In
JMLR, 2011.

[11] A. Fader, S. Soderland, and O. Etzioni. Identifying
relations for open information extraction. In EMNLP, 2011.

[12] A. Fader, L. Zettlemoyer, and O. Etzioni. Open Question
Answering Over Curated and Extracted Knowledge Bases.
In KDD, 2014.

[13] A. Fader, L. S. Zettlemoyer, and O. Etzioni.
Paraphrase-driven learning for open question answering. In
ACL (1), 2013.

[14] L. Galarraga, G. Heitz, K. Murphy, and F. M. Suchanek.
Canonicalizing open knowledge bases. In CIKM, 2014.

[15] D. Gondek and A. Lally et al. A framework for merging
and ranking of answers in deepqa. IBM Journal of
Research and Development, 2012.

[16] T. Kwiatkowski et al. Scaling semantic parsers with
on-the-fly ontology matching. In EMNLP, 2013.

[17] Mausam, M. Schmitz, S. Soderland, R. Bart, and
O. Etzioni. Open language learning for information
extraction. In EMNLP-CoNLL, 2012.

[18] Y. Mohamed. Natural language questions for the web of
data. In EMNLP-CoNLL, 2012.

[19] W. Wu et al. Probase: a probabilistic taxonomy for text
understanding. In SIGMOD, 2012.

[20] X. Yao and B. V. Durme. Information extraction over
structured data: Question answering with freebase. In ACL
(1), 2014.

	Introduction
	System
	Overview
	Question Paraphrasing
	Question Parsing
	Open KB Querying
	Answer Ranking

	Experiment
	Results

	Case Study
	Related Works
	Conclusion and Future Work
	References

